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a b s t r a c t

Two integral operators on the classes consisting of normalized p-valent Ma–Minda type
starlike and convex functions are considered. Functions in these classes have the form
zf ′(z)/f (z) ≺ pϕ(z) and 1 + zf ′′(z)/f ′(z) ≺ pϕ(z) respectively, where ϕ is a convex func-
tionwith ϕ(0) = 1. It is shown that the first of these operators maps starlike functions into
convex functions, while the convex mappings are shown to be closed under the second
integral operator.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane and let A denote the class of all functions f
analytic in D and normalized by the conditions f (0) = 0, and f ′(0) = 1. An analytic function f is subordinate to an analytic
function g , written f (z) ≺ g(z) (z ∈ D), if there exists a function w, analytic in D with w(0) = 0 and |w(z)| < 1, such that
f (z) = g(w(z)). When the function g is univalent in D, the subordination f (z) ≺ g(z) is equivalent to f (0) = g(0) and
f (D) ⊂ g(D). A function f ∈ A is starlike if f (D) is a starlike domain with respect to 0, and a function f ∈ A is convex if
f (D) is a convex domain. Analytically, these requirements are respectively equivalent to the conditions

Re

zf ′(z)
f (z)


> 0, and Re


1 +

zf ′′(z)
f ′(z)


> 0.

In terms of subordination, these conditions are expressed respectively in the forms

zf ′(z)
f (z)

≺
1 + z
1 − z

, and 1 +
zf ′′(z)
f ′(z)

≺
1 + z
1 − z

.

Ma and Minda [1] gave a unified presentation of various subclasses of starlike and convex functions by replacing the
superordinate function (1 + z)/(1 − z) with a more general function ϕ. This analytic function ϕ has positive real part with
ϕ(0) = 1, and maps the unit disk D onto a region starlike with respect to 1. Ma and Minda introduced the following classes
that includes several well-known starlike and convex mappings as special cases:

ST (ϕ) :=


f ∈ A :

zf ′(z)
f (z)

≺ ϕ(z)


∗ Corresponding author.
E-mail addresses: rosihan@cs.usm.my (R.M. Ali), vravi@maths.du.ac.in (V. Ravichandran).

0895-7177/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2010.09.007



Author's personal copy

582 R.M. Ali, V. Ravichandran / Mathematical and Computer Modelling 53 (2011) 581–586

and

CV(ϕ) :=


f ∈ A : 1 +

zf ′′(z)
f ′(z)

≺ ϕ(z)


.

Let Ap be the class of all p-valent analytic functions f (z) = zp + ap+1zp+1
+ ap+2zp+2

+ · · · in the open unit disk D. The
class A1 will be denoted by A. Following Ma and Minda [1], the following classes of p-valent starlike and convex functions
were introduced and investigated in [2].

Definition 1 ([2]). Let ϕ be an analytic univalent function inDwith ϕ(0) = 1. The classCVp(ϕ) consists of functions f ∈ Ap
satisfying

1
p


1 +

zf ′′(z)
f ′(z)


≺ ϕ(z) (z ∈ D),

and the class ST p(ϕ) consists of functions f ∈ Ap satisfying

1
p
zf ′(z)
f (z)

≺ ϕ(z) (z ∈ D).

Let ϕβ : D → C be the function defined by

ϕβ(z) =
1 + (1 − 2β)z

1 − z
, β ≠ 1.

When β < 1, ϕβ(D) is the half-plane defined by Rew > β , while in the case β > 1, ϕβ(D) is the half-plane defined by Re
w < β . Thus for β < 1, the classes ST p(ϕβ) and CVp(ϕβ) reduce to the familiar classes of p-valent starlike and convex
functions of order β:

ST p(β) :=


f ∈ Ap :

1
p
Re

zf ′(z)
f (z)


> β


,

CVp(β) :=


f ∈ Ap :

1
p
Re

1 +

zf ′′(z)
f ′(z)


> β


.

Similarly, for β > 1, the classes ST p(ϕβ) and CVp(ϕβ) reduce respectively to the equivalent classes

Mp(β) :=


f ∈ Ap :

1
p
Re

zf ′(z)
f (z)


< β


,

Np(β) :=


f ∈ Ap :

1
p
Re

1 +

zf ′′(z)
f ′(z)


< β


.

For p = 1, these classeswere considered by Breaz [3], Nishiwaki andOwa [4], Owa andNishiwaki [5], Owa and Srivastava [6],
and Uralegaddi et al. [7].

Next let ϕλ,µ : D → C be the conformal mapping of D onto the domain

Ωλ,µ = {w ∈ C : Rew − µ ≥ λ|w − 1|},

and normalized by ϕλ,µ(0) = 1. Then the classes ST p(ϕλ,µ) and CVp(ϕλ,µ) reduce to the classes ST p(λ, µ) and CVp(λ, µ)
of p-valent starlike and convex functions associated with parabolic starlike and uniformly convex functions. The class
CVp(λ, µ) was investigated by Yang and Owa [8], and Frasin [9]. In fact the classes Cp(λ, µ) and UCp(β, k) investigated by
Frasin [9] are essentially the same: Cp(λ, µ) = UCp(pµ, λ). We shall consider only the former class in this paper, which in
our notation is the class CVp(λ, µ).

For αi ≥ 0 and fi ∈ Ap, define the following respective integral operators:

Fp(z) =

∫ z

0
ptp−1

n∏
i=1


fi(t)
tp

αi

dt, (1.1)

Gp(z) =

∫ z

0
ptp−1

n∏
i=1


f ′

i (t)
ptp−1

αi

dt. (1.2)

In this paper, the above defined integral operators are investigated for the classes of p-valent Ma–Minda type starlike
and convex functions. It is shown that Fp defined by (1.1) transforms a Ma–Minda type starlike function into a Ma–Minda
type convex function. It is also shown that the Ma–Minda type convex functions are closed under the operator Gp given by
(1.2). In the special case p = 1, the results obtained here include several earlier works found in the literature.
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2. Convexity of the integral operators

Theorem 2.1. Let αi ≥ 0, and fi ∈ Ap, i = 1, 2, . . . , n. Let Fp be given by (1.1).

(1) If fi ∈ ST p(βi), βi < 1, then Fp ∈ CVp(γ ) where γ := 1 −
∑n

i=1 αi(1 − βi). In particular, if
∑n

i=1 αi(1 − βi) ≤ 1, then
Fp ∈ CVp := CVp(0).

(2) If fi ∈ Mp(βi), βi > 1, then Fp ∈ Np(γ ) where γ := 1 +
∑n

i=1 αi(βi − 1).

Proof. Since

F ′

p(z) = pzp−1
n∏

i=1


fi(z)
zp

αi

,

it follows that

1
p


1 +

zF ′′
p (z)

F ′
p(z)


=


1 −

n−
i=1

αi


+

n−
i=1

αi
1
p


zf ′

i (z)
fi(z)


.

The desired results are now evident from the definitions of the above classes. �

Corollary 2.1. Let αi ≥ 0, and fi ∈ Ap, i = 1, 2, . . . , n. Let Fp be given by (1.1).

(1) If fi ∈ ST p(β), β < 1, then Fp ∈ CVp(γ )where γ := 1−(1−β)
∑n

i=1 αi. In particular, if
∑n

i=1 αi ≤ 1, then Fp ∈ CVp(β).
(2) If fi ∈ Mp(β), β > 1, then Fp ∈ Np(γ ) where γ := 1 + (β − 1)

∑n
i=1 αi.

Given a complex number b ≠ 0, the classes of p-valent starlike and convex functions of complex order b and type
β (β < 1), are defined as below:

ST p(b, β) :=


f ∈ Ap : Re


1 +

1
b


1
p
zf ′(z)
f (z)

− 1


> β


,

CVp(b, β) :=


f ∈ Ap : Re


1 +

1
b


1
p


1 +

zf ′′(z)
f ′(z)


− 1


> β


.

For p = 1, these classes were considered by [10–13]. It is clear that ST p(b, β) = ST p(b(1 − β), 0) and CVp(b, β) = CVp
(b(1 − β), 0). Similarly, for β > 1, we define the following classes:

Mp(b, β) :=


f ∈ Ap : Re


1 +

1
b


1
p
zf ′(z)
f (z)

− 1


< β


,

Np(b, β) :=


f ∈ Ap : Re


1 +

1
b


1
p


1 +

zf ′′(z)
f ′(z)


− 1


< β


.

Theorem 2.1 extends to the above defined classes as shown in the following result:

Theorem 2.2. Let αi ≥ 0, and fi ∈ Ap, i = 1, 2, . . . , n. Let Fp be given by (1.1).

(1) If fi ∈ ST p(b, βi), βi < 1, then Fp ∈ CVp(b, γ ) where γ := 1 −
∑n

i=1 αi(1 − βi).
(2) If fi ∈ Mp(b, βi), βi > 1, then Fp ∈ Np(b, γ ) where γ := 1 +

∑n
i=1 αi(βi − 1).

Proof. The result follows by noting that

1 +
1
b


1
p


1 +

zF ′′
p (z)

F ′
p(z)


− 1


=


1 −

n−
i=1

αi


+

n−
i=1

αi


1 +

1
b


1
p
zf ′

i (z)
fi(z)

− 1


. �

Remark 2.1. Theorem 2.2(1) extends the work of Bulut [12]. In particular, when p = 1, Theorem 2.2(1) reduces to Theorem
1 in [12].

Theorem 2.3. Let αi ≥ 0, and fi ∈ Ap, i = 1, 2, . . . , n. Let Gp be given by (1.2).

(1) If fi ∈ CVp(βi), βi < 1, then Gp ∈ CVp(γ ) where γ := 1 −
∑n

i=1 αi(1 − βi). In particular, if
∑n

i=1 αi(1 − βi) ≤ 1, then
Gp ∈ CVp.

(2) If fi ∈ Np(βi), βi > 1, then Gp ∈ Np(γ ) where γ := 1 +
∑n

i=1 αi(βi − 1).
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Proof. Since

G′

p(z) = pzp−1
n∏

i=1


f ′

i (z)
pzp−1

αi

,

it follows that

1
p


1 +

zG′′
p(z)

G′
p(z)


=


1 −

n−
i=1

αi


+

n−
i=1

αi
1
p


1 +

zf ′′

i (z)
f ′

i (z)


.

The desired results follow directly from the definitions of the classes. �

Corollary 2.2. Let αi ≥ 0, and fi ∈ Ap, i = 1, 2, . . . , n. Let Gp be given by (1.2).

(1) If fi ∈ CVp(β), β < 1, then Gp ∈ CVp(γ ) where γ := 1 − (1 − β)
∑n

i=1 αi. In particular, if
∑n

i=1 αi ≤ 1, then Gp ∈

CVp(β).
(2) If fi ∈ Np(β), β > 1, then Gp ∈ Np(γ ) where γ := 1 + (β − 1)

∑n
i=1 αi.

In general, the following result is obtained:

Theorem 2.4. Let αi ≥ 0, and fi ∈ Ap, i = 1, 2, . . . , n. Let Gp be given by (1.2).

(1) If fi ∈ CVp(b, βi), βi < 1, then Gp ∈ CVp(b, γ ) where γ := 1 −
∑n

i=1 αi(1 − βi).
(2) If fi ∈ Np(b, βi), βi > 1, then Gp ∈ Np(b, γ ) where γ := 1 +

∑n
i=1 αi(βi − 1).

Proof. The results follow from the equation

1 +
1
b


1
p


1 +

zG′′
p(z)

G′
p(z)


− 1


=


1 −

n−
i=1

αi


+

n−
i=1

αi


1 +

1
b


1
p


1 +

zf ′′

i (z)
f ′

i (z)


− 1


. �

Remark 2.2. For p = 1, Theorem 2.2(1) reduces to Theorem 3 in [12].

As applications of our results, the following results are obtained for the class CVp(λ, µ).

Theorem 2.5. For i = 1, 2, . . . , n, let αi ≥ 0, µi ≥ λi ≥ 0 and

γ := 1 −

n−
i=1

αi
1 − µi

1 + λi
.

(1) If fi ∈ SP p(λi, µi), then Fp ∈ CVp (γ ).
(2) If fi ∈ CVp(λi, µi), then Gp ∈ CVp (γ ).

Proof. We first prove that ST p(λ, µ) ⊂ ST p ((µ + λ)/(1 + λ)). Let f ∈ ST p(λ, µ). Then the quantity w := zf ′(z)/(pf (z))
satisfies

Rew − µ ≥ λ|w − 1|.

The inequality

Rew − µ ≥ −λRe(w − 1)

yields

Rew ≥
µ + λ

1 + λ
.

Thus f ∈ ST p


µ+λ

1+λ


. Now since fi ∈ ST p(λi, µi), then fi ∈ ST p ((µi + λi)/(1 + λi)), and the results of the theorem now

follows from an application of Theorem 2.1(1).
The proof of the second part of the theorem follows similarly from Theorem 2.3(1). �

Remark 2.3. Since

1 −

n−
i=1

αi(1 − µi)

1 + λi
≥ 1 −

n−
i=1

αi(1 − µi),

Theorem2.5(2) improves the corresponding result of Frasin [9, Theorem3.6]. It should bepointed out that the result obtained
by Frasin is independent of the parameters λi, where as these parameters play an important role in our Theorem 2.5(2).
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Next let −1 ≤ B ≤ A ≤ 1, and ϕA,B be given by

ϕA,B(z) =
1 + Az
1 + Bz

(z ∈ D).

Let ST p(A, B) := ST p(ϕA,B) and CVp(A, B) := CVp(ϕA,B). It can be shown that

ST p(A, B) ⊂ ST p((1 − A)/(1 − B)).

Using this fact, the following theorem is evident:

Theorem 2.6. Let αi ≥ 0, −1 < Bi < Ai ≤ 1, i = 1, 2, . . . , n, and

γ := 1 −

n−
i=1

αi
Ai − Bi

1 − Bi
.

(1) If fi ∈ ST p(Ai, Bi), then Fp ∈ CVp (γ ).
(2) If fi ∈ CVp(Ai, Bi), then Gp ∈ CVp (γ ).

3. Closure property of integral operators

For i = 1, 2, . . . , n, letαi ≥ 0, β < 1 and
∑n

i=1 αi ≤ 1. For fi ∈ Ap, let Fp be given by (1.1). By Corollary 2.1, if fi ∈ ST p(β),
then Fp ∈ CVp(β). We prove this in a more general setting in the following theorem:

Theorem 3.1. For i = 1, 2, . . . , n, let αi ≥ 0 and
∑n

i=1 αi ≤ 1. Let ϕ be convex in D with ϕ(0) = 1. If fi ∈ ST p(ϕ), then
Fp ∈ CVp(ϕ).

Proof. As shown in the proof of Theorem 2.1, it follows that

1
p


1 +

zF ′′
p (z)

F ′
p(z)


=


1 −

n−
i=1

αi


+

n−
i=1

αi
1
p


zf ′

i (z)
fi(z)


.

The assumption that fi ∈ ST p(ϕ), yields

1
p
zf ′

i (z)
fi(z)

≺ ϕ(z),

and thus
1
p
zf ′

i (z)
fi(z)

∈ ϕ(D),

for every z ∈ D. Since ϕ is convex, the convex combination of 1 and 1
p
zf ′i (z)
fi(z)

(i = 1, 2, . . . , n), is again in ϕ(D). This shows
that

1
p


1 +

zF ′′
p (z)

F ′
p(z)


=


1 −

n−
i=1

αi


(1) +

n−
i=1

αi
1
p


zf ′

i (z)
fi(z)


∈ ϕ(D),

or

1
p


1 +

zF ′′
p (z)

F ′
p(z)


≺ ϕ(z). �

Shanmugam and Ravichandran [14] have shown that if the fi’s are uniformly convex functions and αi’s are real numbers
such that αi ≥ 0, and

∑n
1 αi ≤ 1, then the function∫ z

0

n∏
i=1

[f ′

i (ζ )]αidζ

is also uniformly convex. This result was extended to parabolic starlike functions of order ρ by Aghalary and Kulkarni [15].
This result is indeed valid even for a more general class of functions:

Theorem 3.2. For i = 1, 2, . . . , n, let αi ≥ 0 and
∑n

i=1 αi ≤ 1. Let ϕ be convex in D with ϕ(0) = 1. If fi ∈ CVp(ϕ), then
Gp ∈ CVp(ϕ).

The proof is similar to Theorem 3.1, and is therefore omitted.
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Remark 3.1. For i = 1, 2, . . . , n, let αi ≥ 0 and
∑n

i=1 αi ≤ 1. Let ϕ be convex in D with ϕ(0) = 1. If fi ∈ CVp(ϕ), then it
follows from Theorem 3.2 that

zp
n∏

i=1


f ′

i (z)
pzp−1

αi

∈ ST p(ϕ).
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